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Introduction
Density-gradient (DG) theory is widely used to analyze 
quantum confinement effects in devices.

Implemented in commercial codes from Synopsis, Silvaco
and ISE.

Similar use of DG theory for tunneling problems has 
not occurred.  Why?

Issues of principle (including is it possible?).
Unclear how to handle multi-dimensions.

Purpose of this talk:  DG theory of tunneling and how 
to apply it in multi-dimensions.
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Some Basics
DG theory is a continuum description that provides an 
approximate treatment of quantum transport.  

Not microscopic and not equivalent to quantum mechanics so much 
is lost, e.g., interference, entanglement, Coulomb blockade, etc.  
Foundational assumption:  The electron and hole gases can be treated 
as continuous media governed by classical field theory.

Continuum assumption often OK even in ultra-small devices:  
Long mean free path doesn't necessarily mean low density.
Long deBroglie λ means carrier gases are probability density fluids. 

Apparent paradox:  How can a classical theory describe 
quantum transport?   A brief answer:

DG theory is only macroscopically classical.  Hence:  
Only macroscopic violations of classical physics must be small. 
Material response functions can be quantum mechanical in origin.
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Density-Gradient Theory
DG theory approximates quantum non-locality by making the 
electron gas equation of state depend on both n and grad(n):

Form of DG equations depends on importance of scattering just 
as with classical transport: 

bn = h 2

4mn*qrn
εn = εn n,∇n  = εno n  - bn

2
 ∇n⋅∇n

n2
where

Continuum theory of 
classical transport

Continuum theory of 
quantum transport

With 
scattering DD theory DG quantum confinement

No 
scattering Ballistic transport DG quantum tunneling
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Electron Transport PDEs
General form of PDEs describing macroscopic electron transport:

Charge/mass 
conservation:

Momentum 
conservation:

dnn
dt

 + n∇⋅vn = -Rn

Electrostatics: ∇⋅D = -q n - N

E= -∇ψ

m*ndnvn
dt

 = ∇⋅τn + qnE - qnEn

Diffusion-Drift
inertia 

negligible

En = -vn/µn

D=εdE

Jn = - nµnE - Dn∇n

Dn ≡ µnn
∂2 nεno

∂n2
with

-τn = npn = n2∂εno n
∂n n ≅ nkBTn

inertia 
negligible

En = -vn/µn

D=εdE

Density-Gradient 
(scattering-dominated)

Jn = - nµnE - Dn∇n + 2bnµn∇
∇2s
s

with s ≡ n

τn = -n2∂εno

∂n n - n∇n⋅ ∂εn
∂∇nn - n∇ ζn

n ζn = -n2 ∂εn
∂∇n ≅ bn∇n

D=εdE

Ballistic Transport

negligible 
scattering

negligible gen/recomb

-τn = npn = n2∂εn n
∂n n = npn n

Density-Gradient
(ballistic regime)

D=εdE

negligible gen/recomb

ζn = -n2 ∂εn
∂∇n ≅ bn∇n

negligible 
scattering

These equations describe 
quantum tunneling through 
barriers.

τn = -n2∂εno

∂n n - n∇n⋅ ∂εn
∂∇nn - n∇ ζn

n
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PDEs for DG Tunneling
Transformations of the DG equations:

Convert from gas pressures to chemical potentials.

Introduce a velocity potential defined by

Governing equations in steady-state:

vn≡ ∇ϑn

∇2ψ = qn
εd

∇⋅ s2∇ϑn  = 0 ∇ϑn⋅∇Ψn
DG = 0

∇⋅ bn∇s  + s
2
ψ + Ψn

DG = 0

Ψn
DG = ϕnDG + ψ - mn*

2q
vn⋅vnwhere
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Boundary Conditions
Lack of scattering implies infinite mobility plus a lack of 
mixing of carriers.  

=> Carriers injected from different electrodes must be 
modeled separately. 

=> Different physics at upstream/downstream contacts 
represented by different BCs.

Upstream conditions are continuity of
Downstream conditions are continuity of ψ and Jn plus 
"tunneling recombination velocity" conditions:

where vtrv is a measure of the density of final states.  

ψ, Jn, Ψn
DG, s, n⋅∇ bns , ϑn

n⋅∇ bns  = 0       and      n⋅∇ϑn = vtrv
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DG Tunneling in 1D
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DG Tunneling in Multi-D
Test case: STM problem, either a 2D ridge or a 3D tip.

That electrodes are metal implies:
Can ignore band-bending in contacts (ideal metal assumption).
High density means strong gradients and space charge effects.

d

1
1 + r

a
2

rGoal here is illustration and 
qualitative behavior, so ignore 
complexities of metals. 

Solve the equations using 
PROPHET, a powerful PDE 
solver based on a scripting 
language (written by Rafferty 
and Smith at Bell Labs).  
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Solution Profiles
Densities are exponential and 
current is appropriately 
concentrated at the STM tip. 
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I-V Characteristics
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Current is exponential with 
strong dependence on curvature.
Asymmetrical geometry 
produces asymmetric I-V as is 
known to occur in STM.   

Illustration:  Estimate tip 
convolution --- the loss in STM 
resolution due to finite radius of 
curvature.
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DG Tunneling in 3-D
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Main new issue in 
3D is efficiency ---
DG approach even 
more advantageous.
As expected, 
asymmetry effect 
even stronger with 
3D tip.



IWCE Meeting, 25-27 Oct 2004

Final Remarks
Application of DG theory to MIM tunneling in multi-
dimensions has been discussed and illustrated.
Qualitatively the results are encouraging, but 
quantitatively less sure.  

DG confinement reasonably well verified in 1D and multi-D.
Much less work done verifying DG tunneling and all in 1D.   

Many interesting problems remain, e.g., gate current in an 
operating MOSFET.
Main question for the future:  Can DG tunneling theory 
follow DG confinement in becoming an engineering tool?

Need to address theoretical, practical and numerical issues.  
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