The Role of Long-Range Forces in Porin Channel Conduction

ORUSH

S. Aboud

Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester MA 01760

D. Marreiro, M. Saraniti Electrical and Computer Engineering Department, Illinois Institute of technology, Chicago IL 60612

R. Eisenberg

Molecular Biophysics Department Rush University, Chicago IL 60616

Introduction

Motivation: Examine the influence of a fully self-consistent force field scheme on conduction in ion channels.

- Particle-Based Simulation Tool
 - Brownian Dynamics
 - Force-Field Scheme
- Computational Domain/Results
 - Electrolyte/Lipid System
 - OmpF Porin Channel
- Conclusion/Future Work

3rd order integration scheme: 20 fs timestep

Electrolyte Solution

Boundary Conditions

Dirichlet:
$$\mathbf{f}(i, j, k) = V_A$$

Neumann: $\frac{\P \mathbf{f}(i, j, k)}{\P n} = 0$

<u>Thermodynamic Properties</u> Radial distribution function $g(r) = \frac{1}{rN} \left\langle \dot{a}_{i} \dot{a}_{j^{1}i} d(\vec{r} - \vec{r}_{ij}) \right\rangle$

OmpF Porin Channel

pH=7; total charge: -30e

Lipid Membrane/Channel System

Potential Energy Profile I: P³M vs PP

Potential Energy Profile II: cation vs anion

Potential Energy Profile III: cation in pore

Minimum potential energy pathway

Channel flux correlation

V_A=1.0 V 100 mM KCI

 Ion-ion pairing within a single pore is observed in BD/MD simulations (W. Im *et al.* J. Mol. Biol. v322 2002).

Channel Flexibility

Conclusion

For the specific charge distribution and dielectric constants:

- The long-range interactions are apparent at zero bias.
- The presence of ions in one pore can change the electrostatic profile seen by charges in the other pores.
- The number of positive and negative charges in the 3 pores shows evidence of correlation.

Future Work

- Different charge distribution scheme: e.g. CHARM
- Different dielectric constants
- Current-voltage characteristics
- Flexible channel structure